A wrapper around mlpack::linear_regression()
and mlpack::lars()
that allows passing a formula.
Usage
linear_regression(
formula = NULL,
data = NULL,
lambda1 = 0,
lambda2 = 0,
no_intercept = FALSE,
no_normalize = FALSE,
use_cholesky = FALSE,
x = NULL,
y = NULL
)
Arguments
- formula
A formula.
- data
A data.frame.
- lambda1
Regularization parameter for L1-norm penalty.
- lambda2
Regularization parameter for L2-norm penalty.
- no_intercept
Logical; passed to
mlpack::lars()
.- no_normalize
Logical; passed to
mlpack::lars()
.- use_cholesky
Logical; passed to
mlpack::lars()
.- x
Design matrix.
- y
Response matrix.
Details
When the lambda1 is 0, this function
fallbacks to mlpack::linear_regression()
for performance.